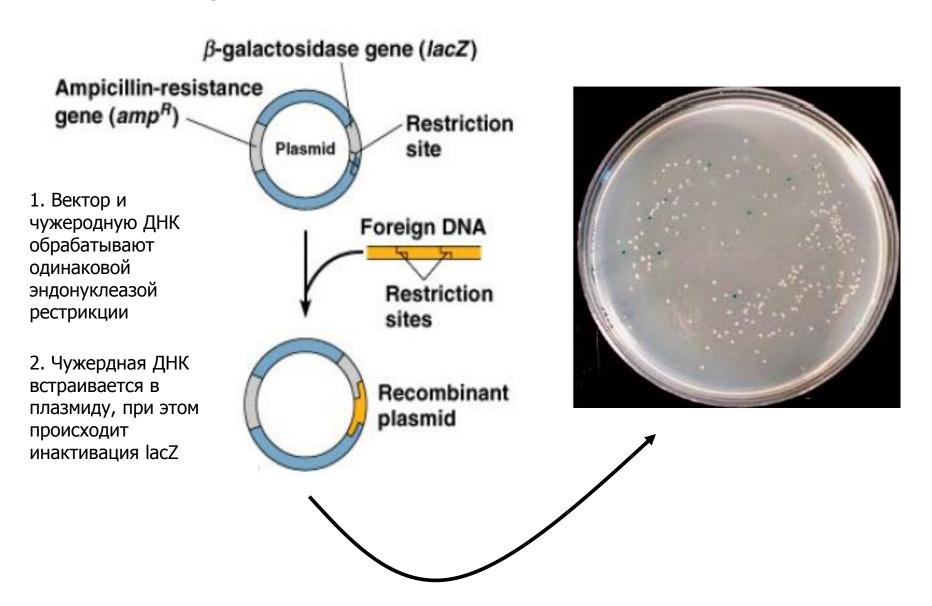
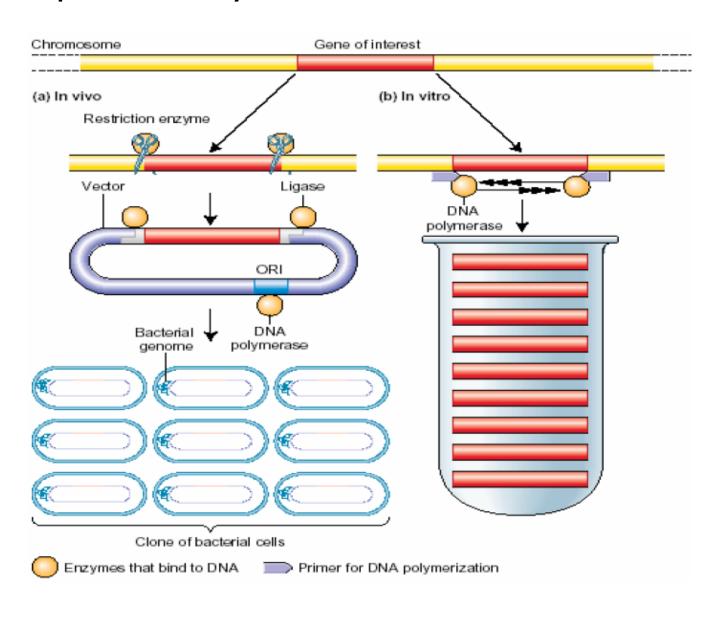

БИОИНЖЕНЕРИЯ

Сергей Лукьянов Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН


Лекция 3

Полимеразная Цепная Реакция (ПЦР)

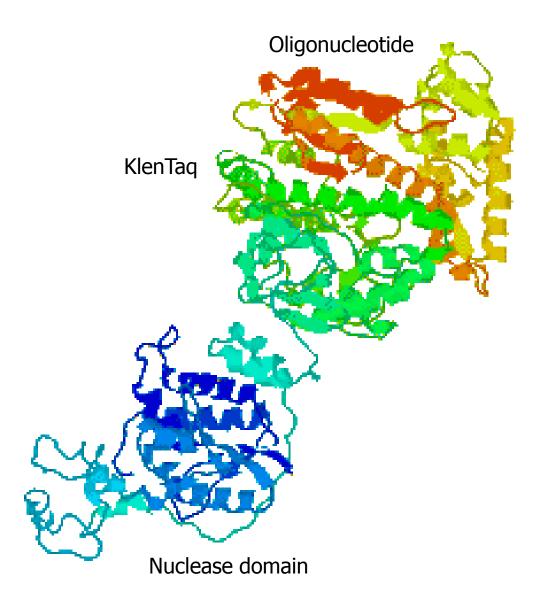

Молекулярное клонирование

Бело-голубая селекция

Клонирование нуклеиновых кислот

Полимеразная цепная реакция

- В 1971 г был описан искусственный синтез ДНК с использованием праймеров. (Kleppe et al.)
- В 1983 г. Kary Mullis предложил метод, обеспечивающий накопление (амплификацию) синтезируемого фрагмента ДНК, (с использованием DNA Pol I E.coli и термостата) получивший название полимеразная цепная реакция (Нобелевская премия по химии 1993 г).
- В 1980 г. Городецкий и др. выделил TaqPol из Т. aquaticus
- В 1986 предложена ПЦР с использованием TaqPol (David Gelfand at all, 1988)



Кари Б. Муллис (Kary B. Mullis)

Зачем нужно амплифицировать фрагмены ДНК

- Получение материала для клонирования, секвенированияи других исследований *in vitro*
- Анализ генной экспрессии
- Диагностика генетических заболеваний
- Детекция микроорганизмов в образцах
- Выявление индивидуальных особенностей особей
- Проверка генно-инженерных конструкций
-

Структура и свойства *Таq*-ДНК-полимеразы

- Наличие 5′→3′
 экзонуклеазной активности
- Отсутствие $3' \to 5'$ экзонуклеазной активности
- Высокая термостабильнсть (время полужизни: ~ 2 часа при 95°C)
- Скорость синтеза ДНК ~
 50 нт/сек при 72°C

Полимеразная цепная реакция: 1-й цикл

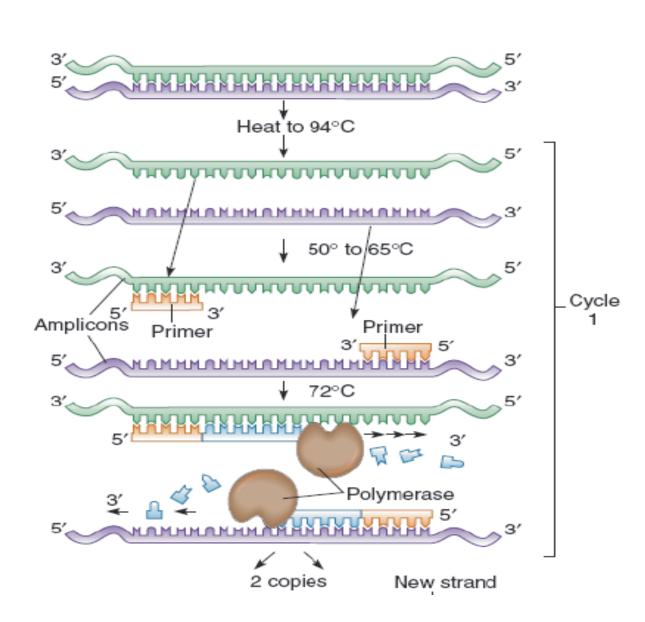
Cycle 1

DNA Sample

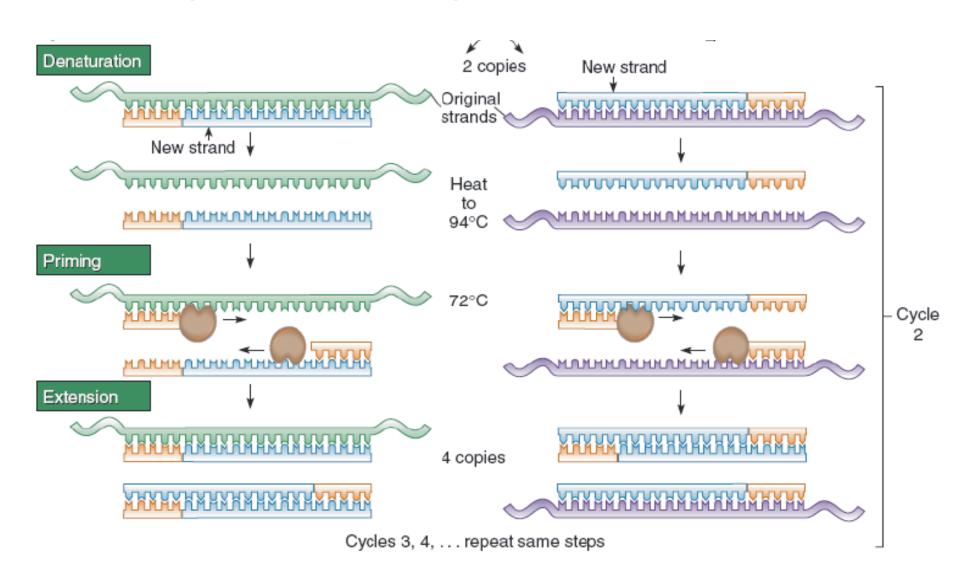
Denaturation

Strands separate

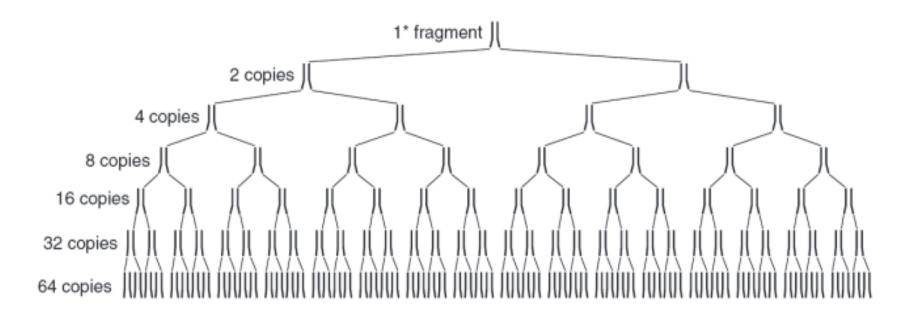
Priming


Oligonucleotide primers attach at ends of strands to promote replication of amplicons

Extension

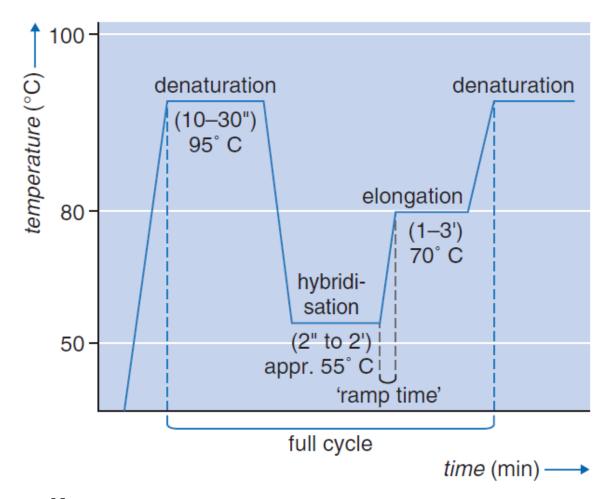

DNA polymerase synthesizes complementary strand

Cycle 2


Denaturation

Полимеразная цепная реакция: 2-й цикл

ПЦР как молекулярная копировальная машина («молекулярный ксерокс»)



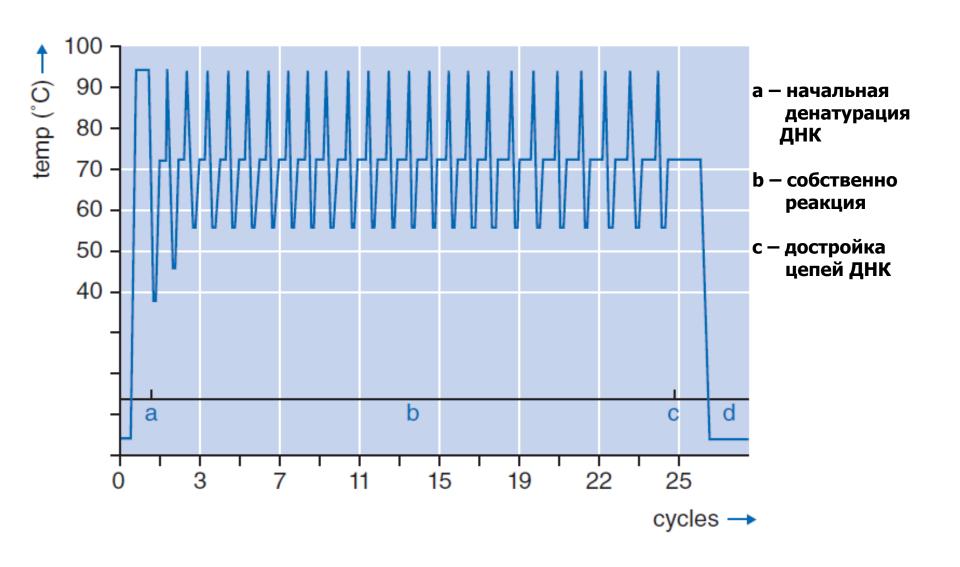
Основные компоненты ПЦР

Реакционная смесь:

- ДНК матрица
- Праймер(ы)
- Смесь dNTPs
- Mg²⁺-содержащий буфер
- Термостабильная ДНК полимераза
- Вода

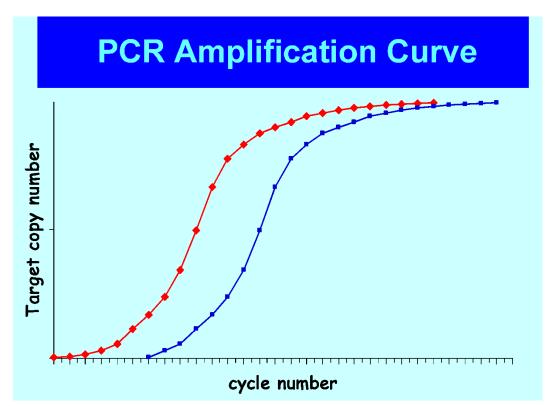
Температурный профиль ПЦР – 1 цикл

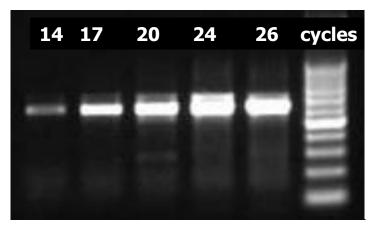
Температурный режим:


- Денатурация (95°C 5-30 сек)
- Отжиг праймера (Т отжига 2-20 сек)
- Элонгация (72°C 1-3 мин)
- Количество циклов зависист от кол-ва матрицы и кол-ва продукта, которое необходимо получить

Температура отжига:

$$T$$
 отжига = $Tm \pm 5$
 $Tm = 2(A+T) + 4(G+C)$


Изменение температуры в типичном трехступенчатом цикле ПЦР


Полный температурный профиль полимеразной цепной реакции (25 циклов)

Основные причины выхода на «плато»

- конкуренция между отжигом праймеров и ренатурацией продукта ПЦР
- Инактивация праймеров за счет формирования димеров
- конкуренция за реактанты неспецифическими продуктами ПЦР
- истощение субстратов (dNTP и праймеров)
- падение активности реактантов (dNTP и Taq-pol)
- накопление пирофосфатов

Современный амплификатор

- Термостатируемая крышка
- Возможность использования 96луночных плашек
- Градиент температуры вдоль нагревающего блока
- Возможность регуляции скорости перехода от одного сегмента цикла к другому

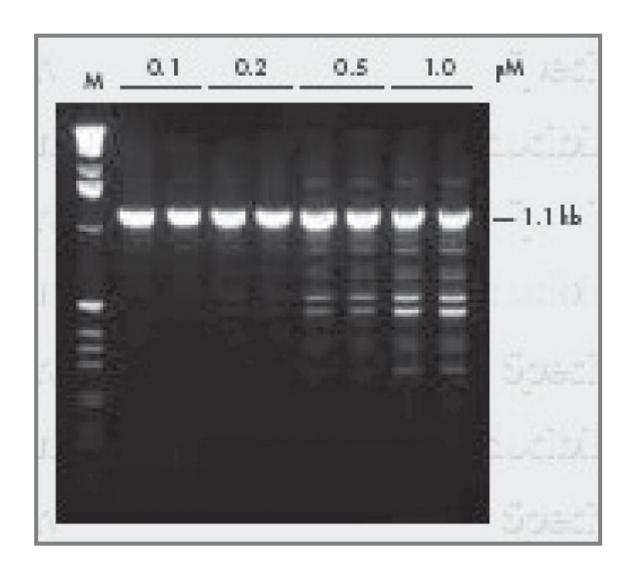
Влияние различных компонентов на эффективность ПЦР

Структура праймеров

- Длина от 8 до 1000 оснований, оптимально 20-30 оснований
- Желательна сходная температура плавления [Tm= 2(A+T) + 4(G+C)]. Предпочтительная температура 60-65°C
- Предпочтительное содержание GC около 50%. Для последовательностей с низким содержанием GC предпочтительнее использовать более длинные праймеры, чтобы сохранить адекватную Tm
- Предпочтительно, если на 3' –конце праймера стоит G или C (G/C "clamp")
- При дизайне праймеров следует избегать последовательностей, способных формировать вторичные структуры

```
5 TATCTAGGACCTTAAAAGGG 3'
| | | | | |
3 CATGGAAACGTAGGAGAC 5'
reverse primer
```

Структура праймеров


Self Dimer

```
8 bp
3' GGGAAAATTCCAGGATCTAT 5'
|||| ||||
5' TATCTAGGACCTTAAAAGGG 3'
```

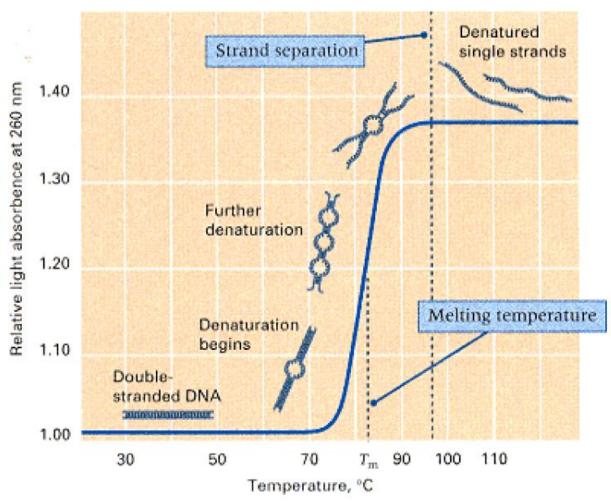
Harpin

```
3' GGGAAA 3' GGGAA 1 | | | A | A | 5' TATCTAGGACCTTA
```

Концентрация праймеров

- Может варьировать в широких пределах допустимы колебания даже в 50 раз. Обычно используется 100-500 нМ.
- Слишком низкая концентрация праймеров может снижать эффективность амплификации.
- Слишком высокая концентрация праймеров может приводить к неспецифической амплификации.

Температура гибридизации для ДНК фрагментов

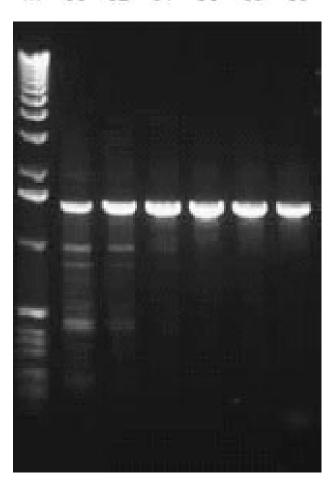

Т гибридизации: Tm — 25°C

Фрагменты ДНК < 50 bp

$$Tm = 2(A+T) + 4(G+C)$$

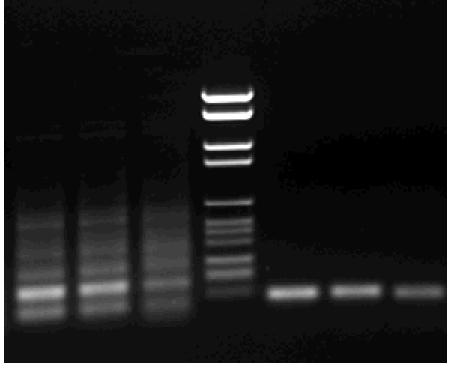
Т гибридизации: Tm - 5°C ???

Плавление (денатурация) ДНК


Температура плавления ДНК (Тт) – это температура, при которой цепи ДНК диссоциированы наполовину

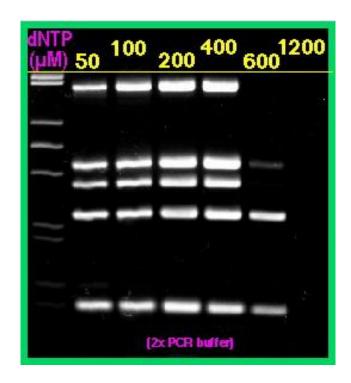
Факторы, влияющие на T_m:

- pH
- Ионная сила
- Органические растворители
- Наличие неспаренных оснований: 1% неспаренных оснований снижает Tm на 1°C


Влияние температуры отжига на специфичность ПЦР

M 50 52 54 56 58 60

ПЦР с «горячим стартом»

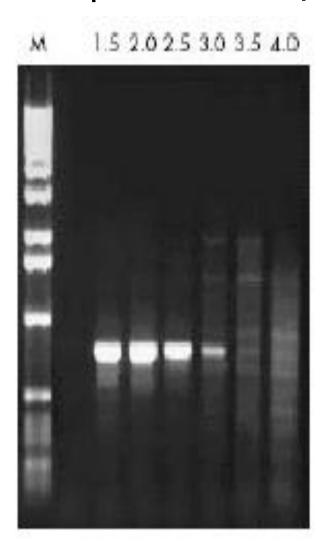


Амплификация гена tPA

«Горячий старт» резко увеличивает специфичность ПЦР:

- Добавление ключевых компонентов реакции (*Таq*-ДНК-полимеразы или ионов магния) при высокой температуре
- Обратимая инактивация Таq-ДНК-полимеразы с помощью антител

Смесь dNTPs

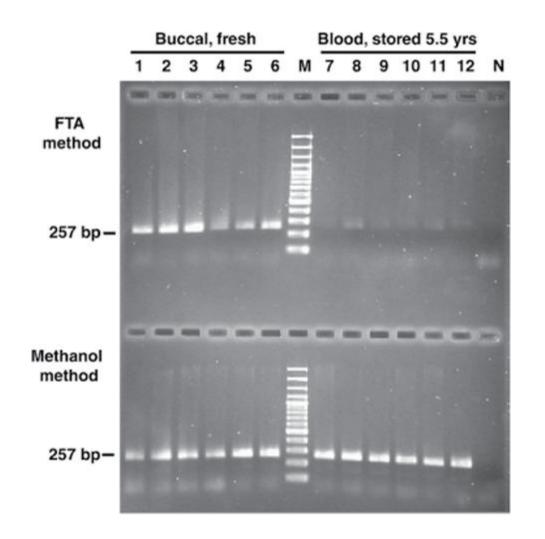

Концентрация:

- Обычно используется 20-400 мкМ
- Избыток может приводить к возникновению ошибок считывания
- Избыток может снижать концентрацию Mg++
- Недостаток может снижать эффективность ПЦР

Смесь чувствительна к многократным циклам замораживания/ размораживания

Чистота dNTPs принципиальна для ПЦР

Влияние концентрации ионов магния на специфичность ПЦР

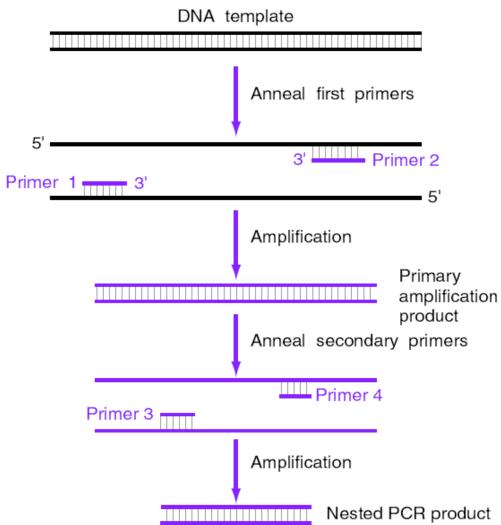

Матрица для ПЦР

Факторы, могущие влиять на эффективность ПЦР

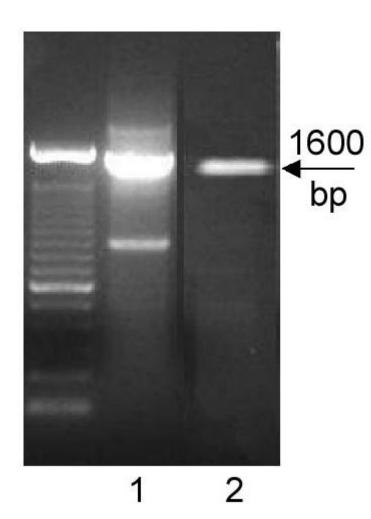
- Качество выделения ДНК

- Наличие белков, солей
- Наличие природных ингибиторов ракции
- Сохранность ДНК
- Наличие загрязнений чужеродной ДНК
- Количество матрицы
- GC состав
- Сложность образца ДНК
- -Длина амплифицируемого фрагмента

Качество выделения и сохранность ДНК


Сравнение продуктов ПЦР при амплификации 4-го экзона гена ТҮК с использованием в качестве матрицы ДНК, выделенной из образцов крови, хранящихся на фильтрах, с разным сроком хранения. Для выделения ДНК использованы стандартный протокол (Whatman FTA protocol) и метод фиксации метанолом.

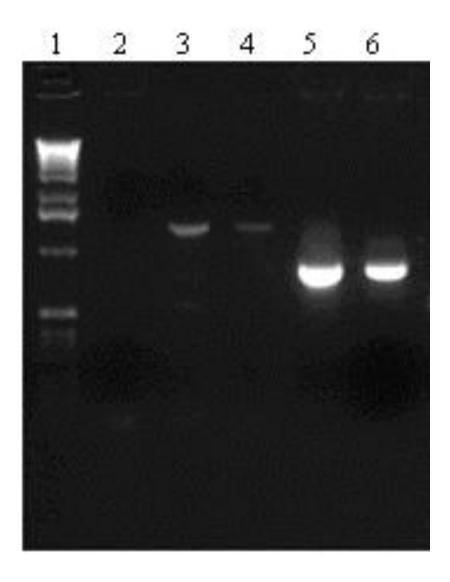
(1–12) Образцы ДНК; (N) отрицательный контроль без ДНК-матрицы; (М) маркер длин ДНК.


Nested PCR при работе со сложными образцами геномной ДНК и неоптимальной структурой праймеров

Две последовательные реакции ПЦР с использованием «заглубленных» праймеров

Обязательно проводить дополнительное разведение продукта 1-ой ПЦР в 500-1000 раз!

Nested PCR



Molecular Weight DNA Ladder,

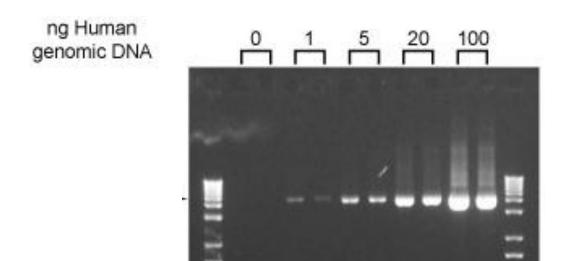
Lane 1: First PCR

Lane 2: Nested PCR

Nested PCR

Lane 1: Molecular Weight 100 bp Ladder,

Lane 2: Negative Control,


Lane 3: Primary PCR product for Type I,

Lane 4: Primary PCR product for Type II,

Lane 5: Secondary PCR product for Type I,

Lane 6: Secondary PCR product for Type II

ПЦР с различных количеств стартовой ДНК

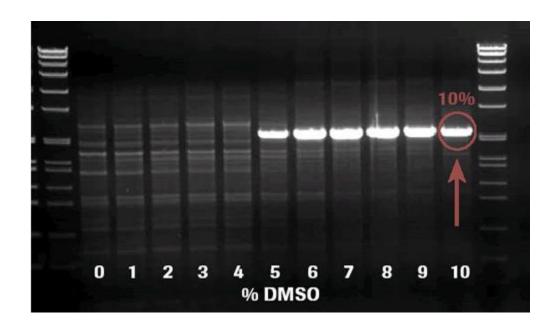
Результат амплификации 4 кб фрагмента гена бета-глобина с разных количеств геномной ДНК человека.

Для амплификации использовали AccuStart PCR SuperMix (LA-PCR, Hot start). Условия амплификации: Предварительная денатурация -- 95°C, 1 мин; 35 циклов: 95 °C, 20c; 58 °C, 20c; 68 °C, 5 мин. 1/10 каждого продукта ПЦР анализировали на 0.8% агарозе, 0.5X ТВЕ буфер, окрашивание бромистым этидием.

Формула ПЦР

(1 pg)
$$10^6$$
 молекул \longrightarrow 20 циклов ПЦР

(1 ng)
$$10^9$$
 молекул — 10 циклов ПЦР


1 молекула ДНК размером 1 т.п.о. имеет массу порядка 10⁻¹⁸ г.

$$N = 2^{(40-n)}$$

N – количество молекул ДНК-матрицы; n – количество циклов ПЦР, которое потребовалось для амплификации ДНК с концентрацией 5-10 мкг/мкл

Если для амплификации образца потребовалось 27 циклов ПЦР, следовательно, изначально в образце было примерно 10⁴ молекул ДНК.

Высокое содержание GC-пар

Влияние DMSO на эффективность ПЦР фрагмента с высоким содержанием GC.

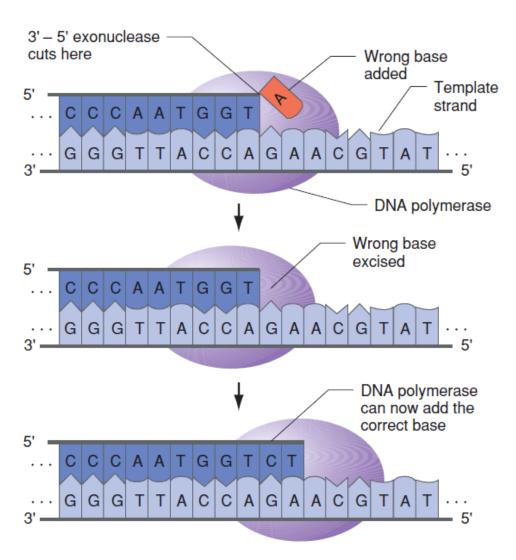
2.0-кб фрагмент гена Аро E (содержание GC – 74%) амплифицировали с 200 нг геномной ДНК человека с помощью FastStart High Fidelity PCR System в присутствии различных количеств DMSO.

Специфичность амплификации увеличивается в присутствии DMSO. Эффективность работы полимеразы не меняется при добавлении DMSO до финальной концентрации 10%.

Добавки, облегчающие ПЦР со «сложных» ДНК матриц

- Глицерин, DMSO
 - Способствуют разрушению вторичных структур
 - В зависимости от структуры праймеров могут повысить, но могут и снизить эффективность ПЦР
- БСА, Бетаин
 - Как правило повышают эффективность амплификации сложных матриц

Long and accurate PCR (LA PCR)


Основные проблемы «обычной» ПЦР реакции

- Продукт ПЦР слишком короткий (до 5 000 пар оснований)
- Продукт ПЦР содержит ошибки (обычно 3-5 на 1000 пар после 30 циклов ПЦР)

Решение

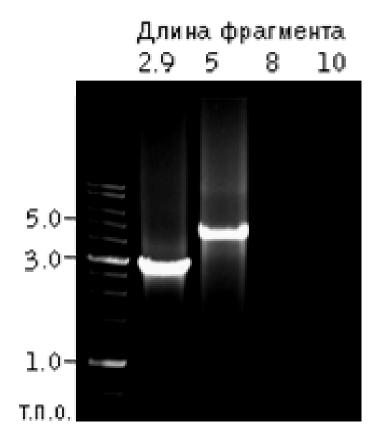
- Использование смесей из двух ДНК-полимераз: Таф или KlenTaф (или их модификации) + низкопроцессивной полимеразы с 3'→5'- экзонуклеазной активностью позволяет существенно увеличить длину получаемого продукта ПЦР
- Использование высокоочищенных dNTPs и ферментов
- Более аккуратная очистка ДНК матрицы
- Увеличение времени элонгации до 15-60 мин

Коррекция неправильно включенного нуклеотида 3′→5′-экзонуклеазой ДНК-полимеразы

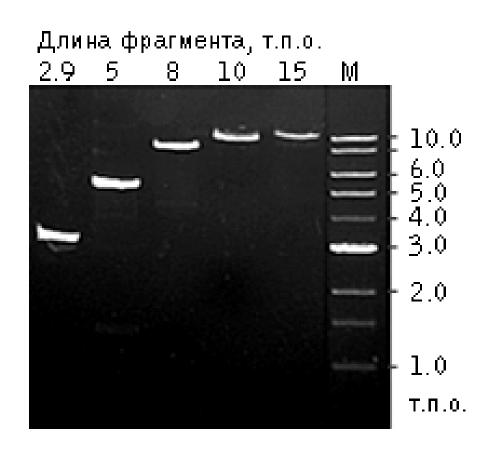
Некоторые характеристики термостабильных ДНК полимераз

Полимеразы	Время полужизн и при 95 ⁰ C (min)	Процессивность	Экзонуклеазная активность 5'-3' (+/-)	Экзонуклеазная активность 3'-5' (+/-)	Достройка 3'-концов
Taq	120	высокая	+	-	А-он
Tth	20	высокая	+	-	А-он
Pfu	120	низкая	-	+	-
Vent	400	низкая	-	+	-
Deep Vent	1300	низкая	-	+	-
UlTma	50	низкая	-	+	-
Pwo	120 при 100°C	низкая	-	+	-

Точность синтеза ДНК термостабильными ДНК-полимеразами


Reported Fidelity for Several Different Thermal Stable DNA Polymerases Using the Forward Mutation Assay.

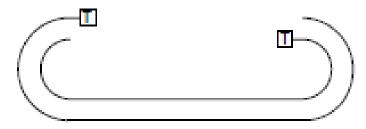
DNA Polymerase	Error Rate x 10 ⁻⁶	Accuracy x 10 ⁵	
Pfu	1.3 <u>+</u> 0.2	7.7	
Deep Vent	2.7 <u>+</u> 0.2	3.7	
Vent	2.8 + 0.9	3.6	
Taq	8.0 + 3.9	1.3	
UlTma	55.3 + 2.0	0.2	


Error rate is commonly expressed as the mutation rate per bp duplicated.

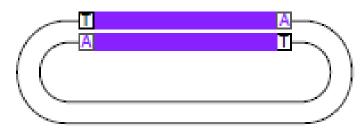
Accuracy is the average number of nucleotides the polymerase incorporates before making an error.

Амплификация фрагментов фага лямбда

Taq DNA Polymerase



LA-PCR mixture (Encyclo, Evrogen)


Клонирование продукта ПЦР

PCR product with 3' A overhang

Prepared cloning vector

Recombinant plasmid

Проблемы при постановке ПЦР

• **Ингибирование реакции** за счет недостаточной очистки ДНКматрицы (ДНКазы, протеазы, фенол, ЭДТА и т.д.)

• Контаминация ДНК-матрицы или реактивов посторонней ДНК

- Рекомендуется осуществлять подготовку матрицы, ПЦР и анализ на гель-электрофорезе в различных помещениях
- Рекомендуется использовать разные наборы дозаторов для подготовки матрицы, ПЦР и анализа на гель-электрофорезе
- Рекомендуется использовать носики с аэрозольным фильтром

Неспецифическая амплификация

- Полимераза работает при низких температурах (горячий старт позволяет уменьшить неспецифическую амплификацию)
- Неоптимальные условия ПЦР
- Слишком большое число циклов ПЦР

• Необходимые контроли

- Положительный контроль с целевой ДНК-матрицы
- Отрицательный контроль без добавления ДНК-матрицы